If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+13t-24=0
a = 4.9; b = 13; c = -24;
Δ = b2-4ac
Δ = 132-4·4.9·(-24)
Δ = 639.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{639.4}}{2*4.9}=\frac{-13-\sqrt{639.4}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{639.4}}{2*4.9}=\frac{-13+\sqrt{639.4}}{9.8} $
| 25^x+5^x+1=750 | | 3x^3−11x^2−35x+75=0 | | 6(8-x)-(2x+2)=8+5(x-8) | | 1-2(x+1)=3(x+2) | | 5(8-x)-(x+1)=5+4(x-4) | | 3(x-29)-8=3x-53 | | 3(x-8)-29=3x-10 | | 2/3x-1/4=15/4 | | -6x+8=-36 | | 5x-6x^2=7 | | 5x/8+8=13 | | 6f-5=37 | | (3x+12)-×=360 | | 3x-2x2=7 | | 10(x+2)=6(x+11) | | 4-9=3-10x-(7-x) | | |3p-6|=|2p+16| | | 3x+1/x=2x-3/x+1=1/x(x+1) | | -3x(2x-1)(x+6)^=0 | | y–2+3y=10 | | 5y²+12y=8 | | 9(3x-7)=26 | | 8(8x-6)=20 | | 5y²+12y-8=0 | | 8(4x-9)=22 | | 9(4x-9)=49 | | 9(3x-1)=8(3x-6) | | 9k^2-78k-27=0 | | 9x-5x-3=3x-x+1 | | 2+3y=5y | | x=(7x/5)+9=23 | | 7=7(r-5)/3 |